Example of operads: the genus zero modular operad

Noémie C. Combe
MPI MiS
Wednesday 10/06 at 17:00
Definition with vector spaces

- A (symmetric) operad P consists of a collection of k-vector spaces $\{P(n)\}_{n \geq 1}$ (such that the symmetric group \mathbb{S}_r acts on $P(r)$) endowed with:

 ▶ composition maps $\circ_i : P(k) \times P(l) \to P(k+l-1)$,

 ▶ a unit morphism $\eta : 1 \to P(1)$,

satisfying some axioms (equivariance, unit, associativity).

Example of operads: the genus zero modular operad.
Definition with vector spaces

- A (symmetric) operad P consists of a collection of k-vector spaces $\{P(n)\}_{n \geq 1}$ (such that the symmetric group S_r acts on $P(r)$) endowed with:
 - composition maps
 $$\circ_i : P(k) \times P(l) \to P(k + l - 1),$$
 - a unit morphism $\eta : 1 \to P(1)$.

Example of operads: the genus zero modular operad
Definition with vector spaces

- A (symmetric) operad P consists of a collection of k-vector spaces $\{P(n)\}_{n \geq 1}$ (such that the symmetric group S_r acts on $P(r)$) endowed with:

 - composition maps

$$\circ_i : P(k) \times P(l) \to P(k + l - 1),$$

- a unit morphism $\eta : 1 \to P(1)$
Definition with vector spaces

- A (symmetric) operad P consists of a collection of k-vector spaces $\{P(n)\}_{n \geq 1}$ (such that the symmetric group S_r acts on $P(r)$) endowed with:
 - composition maps $\circ_i : P(k) \times P(l) \to P(k + l - 1)$,
 - a unit morphism $\eta : 1 \to P(1)$
 - + satisfying some axioms (equivariance, unit, associativity).

Example of operads: the genus zero modular operad
Operads can be applied everywhere ...
... as long as you have a

symmetric monoidal category.
Symmetric monoidal category

Ingredients:

1. Category \mathcal{C},
Symmetric monoidal category

Ingredients:
1. Category C,
2. a tensor product $\otimes : C \times C \to C$,
Symmetric monoidal category

Ingredients:
1. Category C,
2. a tensor product $\otimes : C \times C \to C$,
3. a unit object $1 \in C$,
Symmetric monoidal category

Ingredients:

1. Category \mathcal{C},
2. a tensor product $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$,
3. a unit object $1 \in \mathcal{C}$,
4. natural isomorphisms $(X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$
5. coherence axioms,
6. and symmetry isomorphisms $c_{X,Y} : X \otimes Y \to Y \otimes X$ such that $c_{X,Y}c_{Y,X} = id$.

Example of operads: the genus zero modular operad
Symmetric monoidal category

Ingredients:
1. Category C
2. a tensor product $\otimes : C \times C \to C$
3. a unit object $1 \in C$
4. natural isomorphisms $(X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$
5. coherence axioms,
6. and symmetry isomorphisms $c_{X,Y} : X \otimes Y \to Y \otimes X$ such that $c_{X,Y} \circ c_{Y,X} = \text{id}$.

Example of operads: the genus zero modular operad
Symmetric monoidal category

Ingredients:

1. Category \(\mathcal{C} \),
2. a tensor product \(\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C} \),
3. a unit object \(\mathbf{1} \in \mathcal{C} \),
4. natural isomorphisms \((X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z) \)
5. coherence axioms,
6. and symmetry isomorphisms \(c_{X,Y} : X \otimes Y \to Y \otimes X \) such that \(c_{X,Y} c_{Y,X} = \text{id} \).
We can think of an n-ary operation as a little black box with n wires coming in and one wire coming out:
Shrink the black box to a point, you obtain this graph ᵃ:
Trees for operads

Tree T:

- non-empty, connected graph.
- No loops.
- Can be oriented.

Property: At each vertex there exists at least one incoming edge; exactly one outgoing edge.

External edge: bounded by a vertex (one end only).

Internal edges: those bounded by vertices at both ends (all edges that are not external).
Any tree has:
- a **unique outgoing** external edge, called the **output** (or the **root**) of the tree,
- **several ingoing** edges, called **inputs** or leaves of the tree.

Similarly, the edges going in and out of a vertex v of a tree will be referred to as inputs and outputs at v.
Operadic zoo

Algebras:

- Operad

Graphs:

- Rooted trees

Example of operads: the genus zero modular operad
Operadic zoo

Algebras:

- Operad
- Cyclic operads

Graphs:

- Rooted trees
- Trees

Example of operads: the genus zero modular operad
Operadic zoo

Algebras:

- Operad
- cyclic operads
- k-modular

Graphs:

- Rooted trees
- trees
- connected + orientation + on set of edges + genus marking

Example of operads: the genus zero modular operad
Operadic zoo

Algebras:

- Operad
- cyclic operads
- k-modular
- dioperads

Graphs:

- Rooted trees
- trees
- connected + orientation + on set of edges + genus marking
- connected directed graphs w/o directed loops or parallel edges

Example of operads: the genus zero modular operad
Operadic zoo

Algebras:

- Operad
- cyclic operads
- k-modular
- dioperads
- properads

Graphs

- Rooted trees
- trees
- connected + orientation + on set of edges + genus marking
- connected directed graphs w/o directed loops or parallel edges
- connected directed graphs w/o directed loops
Borisov–Manin’s generalized operad definition

Definition [Borisov–Manin]

Operads of various types are certain functors from a category of labeled graphs Γ to a symmetric monoidal category (G, \otimes) which will be called ground category.

Example

The simplest example is that of finite-dimensional vector spaces over a field, or that of finite complexes of such spaces.

N.B: The word 'operad' is in the wide sense (i.e. May and Markl operads, cyclic operads, modular operads, PROPS, properads, dioperads etc.).
Operadic zoo:
What kind of operadic creatures can we find?

Modular operad. No distinction between *inputs* and *outputs*.

EXAMPLE. The Deligne-Mumford moduli spaces of stable curves of genus g with $n + 1$ points. The operadic composite maps are defined by intersecting curves along their marked points.
Configuration spaces vs Moduli spaces

Little disk operad ↔ configuration spaces operad.

Let \(\text{Conf}^n(C) \) denote the configuration space of \(n \) marked points on \(C \). We have that:

\[
\text{Conf}^n(C) \cong \text{Conf}^{n+1}(\mathbb{P})
\]

Taking the quotient by the action of \(\text{PGL}_2(C) \), we have:

\[
\overline{M}_{0,n} \cong \overline{\text{Conf}}^{n+1}(\mathbb{P})/\text{PGL}_2(C),
\]

where \(\overline{M}_{0,n} \) is the compactified moduli space of genus 0 curves with marked points.

Example of operads: the genus zero modular operad
Figure: Deligne-Mumford moduli spaces, figure from S. Devadoss, *Tessellations of Moduli spaces and the Mosaic operad*
Quadratic algebras category

Let k be a (commutative) field of char. 0. Consider a category of vector spaces over k.

Definition A *quadratic algebra* is a graded k-algebra $A = \bigoplus_{i=0}^{\infty} A_i$, where $A_0 = k$, A_1 is a finite dimensional subspace generating A, and such that an appropriate subspace $R(A) \subset A \otimes^2$ generates the ideal of all relations between elements of A_1.
A is given together with the surjective morphism of the tensor algebra of A_1 to A, whose kernel in the component of degree $d \geq 2$ equals

$$\sum_{i + k = d - 2} A_1 \otimes_i \otimes_k R(A) \otimes_k A_1 \otimes^k.$$

- We write $A \leftrightarrow (A_1, R(A))$.

Example of operads: the genus zero modular operad
• Quadratic algebras are objects of the category QA,
• morphisms $A \to B$ can be described as linear maps $f : A_1 \to B_1$ such that $(f \otimes f)(R(A)) \subset R(B)$.

Whenever we are dealing only with QA as a category, we may simply denote its objects $(A_1, R(A))$.

♣ There is also the natural functor $\text{QA} \to \text{Lin}_k$ (where Lin_k is the category of finite dimensional linear spaces over k). It is given by $A \to A_1$.
An operad P is a tensor functor between symmetric monoidal categories $(\Gamma, \sqcup) \rightarrow (QA, \otimes)$ where Γ is a category of labelled (finite) graphs with disjoint union; tensor product in QA is defined as:

$$(A_1, R(A)) \otimes (B_1, R(B)) := (A_1 \oplus B_1, R(A) \oplus [A_1, B_1] \oplus R(B)).$$
Operad with target category (QA, \otimes)

The data completely determining such an operad is the set of morphisms in the target category (QA, \otimes):

$$P(k) \otimes P(m_1) \otimes P(m_2) \otimes \cdots \otimes P(m_k) \to P(n), \quad n = m_1 + \cdots + m_k,$$

indexed by unshuffles of $\{1, 2, \ldots, n\}$.
Genus 0 modular operad

We consider the shuffle operad in the category \mathbf{QA}: the genus 0 modular (co)operad P.

The component of arity n, for $n \geq 2$ of P, is the cohomology ring $P(n) := H^*(\overline{M}_{0,n+1}, \mathbb{Q})$, where $\overline{M}_{0,n+1}$ is the moduli space (projective manifold) parametrising stable curves of genus zero with $n + 1$ labelled points. Component of arity 1 is \mathbb{Q}.
Genus 0 modular operad

Structure morphisms (cooperadic comultiplications):

\[P(m_1 + m_n + \cdots + m_k) \to P(k) \otimes P(m_1) \otimes P(m_2) \otimes \cdots \otimes P(m_k) \]

are maps induced by the maps of moduli spaces defined point-wise by a glueing of the respective stable curves:

\[\overline{M}_{0,k+1} \times \overline{M}_{0,m_1+1} \times \overline{M}_{0,m_2+1} \cdots \times \overline{M}_{0,m_k+1} \to \overline{M}_{0,m_1+\cdots+m_k+1} \]
Remark

There is another operad G whose components of every arity are quadratic algebras as well. It encodes Gerstenhaber algebras (Loday–Vallette, pp. 506 and 536).

Each $G(n)$ can be represented as the homology ring of the Fulton–MacPherson compactification of the space of configurations of n points in R^2.
Operad characterised by the category of algebras that it classifies

The operad P produces algebras endowed with infinitely many multilinear operations satisfying infinitely many “multicommutativity” properties.

- Let L be a linear space with symmetric even non-degenerate scalar product h.
 An action of P upon it induces upon L the hypercommutative (or hyperCom) algebra (see next slide).
4.4.1. Definition. A structure of cyclic hyperCom-algebra on (L, g) is a sequence of polylinear multiplications

$$\circ_n : L^\otimes n \to L, \circ_n(\gamma_1 \otimes \cdots \otimes \gamma_n) =: (\gamma_1, \ldots, \gamma_n), \quad n \geq 2$$

satisfying three axioms:

(i) Commutativity = S_n-symmetry;

(ii) Cyclicity: $h((\gamma_1, \ldots, \gamma_n), \gamma_{n+1})$ is S_{n+1}-symmetric;

(iii) Associativity: for any $m \geq 0$, $\alpha, \beta, \gamma, \delta_1, \ldots, \delta_m$

$$\sum_{\{1, \ldots, m\} = S_1 \sqcup S_2} \pm((\alpha, \beta, \delta_i \mid i \in S_1), \gamma, \delta_j \mid j \in S_2) =$$

$$\sum_{\{1, \ldots, m\} = S_1 \sqcup S_2} \pm(\alpha, \delta_i \mid i \in S_1), \beta, \gamma, \delta_j \mid j \in S_2))$$

with usual signs from superalgebra.

(iv) (Optional) identity Data and Axiom: $e \in L_{even}$ satisfying

$$(e, \gamma_1, \ldots, \gamma_n) = \gamma_1$$ for $n = 1$; 0 for $n \geq 2.$