Example of operads: the genus zero modular operad

Noémie C. Combe MPI MiS

Wednesday 10/06 at 17:00

Definition with vector spaces

- A (symmetric) operad P consists of a collection of k-vector spaces $\{P(n)\}_{n \geq 1}$ (such that the symmetric group \mathbb{S}_{r} acts on $\left.P(r)\right)$ endowed with:

Definition with vector spaces

- A (symmetric) operad P consists of a collection of k-vector spaces $\{P(n)\}_{n \geq 1}$ (such that the symmetric group \mathbb{S}_{r} acts on $\left.P(r)\right)$ endowed with:
- composition maps

$$
\circ_{i}: P(k) \times P(I) \rightarrow P(k+I-1)
$$

Definition with vector spaces

- A (symmetric) operad P consists of a collection of k-vector spaces $\{P(n)\}_{n \geq 1}$ (such that the symmetric group \mathbb{S}_{r} acts on $\left.P(r)\right)$ endowed with:
- composition maps

$$
\circ_{i}: P(k) \times P(I) \rightarrow P(k+I-1),
$$

- a unit morphism $\eta: \mathbf{1} \rightarrow P(1)$

Definition with vector spaces

- A (symmetric) operad P consists of a collection of k-vector spaces $\{P(n)\}_{n \geq 1}$ (such that the symmetric group \mathbb{S}_{r} acts on $\left.P(r)\right)$ endowed with:
- composition maps

$$
\circ_{i}: P(k) \times P(I) \rightarrow P(k+I-1)
$$

- a unit morphism $\eta: \mathbf{1} \rightarrow P(1)$
- + satisfying some axioms (equivariance, unit, associativity).

Operads can be applied everywhere ...
... as long as you have a

symmetric monoidal category.

Symmetric monoidal category

Ingredients:

1. Category \mathcal{C},

Symmetric monoidal category

Ingredients:

1. Category \mathcal{C},
2. a tensor product $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$,

Symmetric monoidal category

Ingredients:

1. Category \mathcal{C},
2. a tensor product $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$,
3. a unit object $\mathbf{1} \in \mathcal{C}$,

Symmetric monoidal category

Ingredients:

1. Category \mathcal{C},
2. a tensor product $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$,
3. a unit object $\mathbf{1} \in \mathcal{C}$,
4. natural isomorphisms $(X \otimes Y) \otimes Z \rightarrow X \otimes(Y \otimes Z)$

Symmetric monoidal category

Ingredients:

1. Category \mathcal{C},
2. a tensor product $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$,
3. a unit object $\mathbf{1} \in \mathcal{C}$,
4. natural isomorphisms $(X \otimes Y) \otimes Z \rightarrow X \otimes(Y \otimes Z)$
5. coherence axioms,

Symmetric monoidal category

Ingredients:

1. Category \mathcal{C},
2. a tensor product $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$,
3. a unit object $\mathbf{1} \in \mathcal{C}$,
4. natural isomorphisms $(X \otimes Y) \otimes Z \rightarrow X \otimes(Y \otimes Z)$
5. coherence axioms,
6. and symmetry isomorphisms $c_{X, Y}: X \otimes Y \rightarrow Y \otimes X$ such that $c_{X, Y} c_{Y, X}=i d$.

We can think of an n-ary operation as a little black box with n wires coming in and one wire coming out:

Inputs

Shrink the black box to a point, you obtain this graph k :

Trees for operads

Tree T :

non-empty, connected graph.
No loops.
Can be oriented.
Property: At each vertex there exists at least one incoming edge; exactly one outgoing edge.

External edge: bounded by a vertex (one end only).
Internal edges: those bounded by vertices at both ends (all edges that are nor external)

Any tree has:

- a unique outgoing external edge, called the output (or the root) of the tree,
- several ingoing edges, called inputs or leaves of the tree.

Similarly, the edges going in and out of a vertex v of a tree will be referred to as inputs and outputs at v .

Operadic zoo

Algebras:

- Operad

Graphs

- Rooted trees

Operadic zoo

Algebras:

- Operad
- cyclic operads

Graphs

- Rooted trees
- trees

Operadic zoo

Algebras:

- Operad
- cyclic operads
- k-modular

Graphs

- Rooted trees
- trees
- connected + orientation + on set of edges + genus marking

Operadic zoo

Algebras:

- Operad
- cyclic operads
- k-modular
- dioperads

Graphs

- Rooted trees
- trees
- connected + orientation + on set of edges + genus marking
- connected directed graphs w/o directed loops or parallel edges

Operadic zoo

Algebras:

- Operad
- cyclic operads
- k-modular
- dioperads
- properads

Graphs

- Rooted trees
- trees
- connected + orientation + on set of edges + genus marking
- connected directed graphs w/o directed loops or parallel edges
- connected directed graphs w/o directed

Borisov-Manin's generalized operad definition

Definition [Borisov-Manin]

Operads of various types are certain functors from a category of labeled graphs Γ to a symmetric monoidal category (G, \otimes) which will be called ground category.

Example

The simplest example is that of finite-dimensional vector spaces over a field, or that of finite complexes of such spaces.
N.B: The word 'operad' is in the wide sense (i.e.May and Markl operads, cyclic operads, modular operads, PROPS, properads, dioperads etc.).

Operadic zoo: What kind of operadic creatures can we find?

Modular operad. No distinction between inputs and outputs.

EXAMPLE. The Deligne-Mumford moduli spaces of stable curves of genus g with $n+1$ points. The operadic composite maps are defined by intersecting curves along their marked points.

Configuration spaces vs Moduli spaces

Little disk operad \leftrightarrow configuration spaces operad.
Let $\operatorname{Conf}_{n}(\mathbb{C})$ denote the configuration space of n marked points on \mathbb{C}. we have that:

$$
\operatorname{Conf}_{n}(\mathbb{C}) \cong \operatorname{Conf}_{n+1}(\mathbb{P})
$$

Taking the quotient by the action of $P G L_{2}(\mathbb{C})$, we have:

$$
\bar{M}_{0, n} \cong \overline{\operatorname{Conf}}_{n+1}(\mathbb{P}) / P G L 2(\mathbb{C})
$$

where $\bar{M}_{0, n}$ is the compactified moduli space of genus 0 curves with marked points.

Figure: Deligne-Mumford moduli spaces, figure from S. Devadoss, Tessellations of Moduli spaces and the Mosaic operad

Quadratic algebras category

Let k be a (commutative) field of char. 0 . Consider a category of vector spaces over k.

Definition A quadratic algebra is a graded k-algebra $A=\oplus_{i=0}^{\infty} A_{i}$, where $A_{0}=k, A_{1}$ is a finite dimensional subspace generating A, and such that an appropriate subspace $R(A) \subset A^{\otimes 2}$ generates the ideal of all relations between elements of A_{1}.
A is given together with the surjective morphism of the tensor algebra of A_{1} to A, whose kernel in the component of degree $d \geq 2$ equals

$$
\sum_{i+k=d-2} A_{1}^{\otimes i} \otimes_{k} R(A) \otimes_{k} A_{1}^{\otimes k} .
$$

- We write $A \leftrightarrow\left(A_{1}, R(A)\right)$.

QA category

- Quadratic algebras are objects of the category QA,
- morphisms $A \rightarrow B$ can be described as linear maps $f: A_{1} \rightarrow B_{1}$ such that $(f \otimes f)(R(A)) \subset R(B)$.
Whenever we are dealing only with QA as a category, we may simply denote its objects $\left(A_{1}, R(A)\right)$.
\& There is also the natural functor $\mathbf{Q A} \rightarrow \operatorname{Lin}_{k}$ (where Lin_{k} is the category of finite dimensional linear spaces over k). It is given by $A \rightarrow A_{1}$.

Definition by Borisov-Manin

An operad P is a tensor functor between symmetric monoidal categories $(\Gamma, \sqcup) \rightarrow(\mathbf{Q A}, \otimes)$ where Γ is a category of labelled (finite) graphs with disjoint union; tensor product in QA is defined as:

$$
\left(A_{1}, R(A)\right) \otimes\left(B_{1}, R(B)\right):=\left(A_{1} \oplus B_{1}, R(A) \oplus\left[A_{1}, B_{1}\right] \oplus R(B)\right)
$$

Operad with target category ($\mathbf{Q A}, \otimes$)

The data completely determining such an operad is the set of morphisms in the target category (QA, \otimes):
$P(k) \otimes P\left(m_{1}\right) \otimes P\left(m_{2}\right) \otimes \cdots \otimes P\left(m_{k}\right) \rightarrow P(n), \quad n=m_{1}+\cdots+m_{k}$, indexed by unshuffles of $\{1,2, \ldots, n\}$

Genus 0 modular operad

We consider the shuffle operad in the category QA : the genus 0 modular (co)operad P.
The component of arity n, for $n \geq 2$ of P, is the cohomology ring $P(n):=H^{*}\left(\bar{M}_{0, n+1}, \mathbf{Q}\right)$, where $\bar{M}_{0, n+1}$ is the moduli space (projective manifold) parametrising stable curves of genus zero with $n+1$ labelled points. Component of arity 1 is \mathbf{Q}.

Genus 0 modular operad

Structure morphisms (cooperadic comultiplications):

$$
P\left(m_{1}+m_{n}+\cdots+m_{k}\right) \rightarrow P(k) \otimes P\left(m_{1}\right) \otimes P\left(m_{2}\right) \otimes \cdots \otimes P\left(m_{k}\right)
$$

are maps induced by the maps of moduli spaces defined point-wise by a glueing of the respective stable curves:

$$
\bar{M}_{0, k+1} \times \bar{M}_{0, m_{1}+1} \times \bar{M}_{0, m_{2}+1} \cdots \times \bar{M}_{0, m_{k}+1} \rightarrow \bar{M}_{0, m_{1}+\cdots+m_{k}+1}
$$

Remark

There is another operad G whose components of every arity are quadratic algebras as well. It encodes Gerstenhaber algebras (Loday-Vallette, pp. 506 and 536).
Each $G(n)$ can be represented as the homology ring of the Fulton-MacPherson compactification of the space of configurations of n points in R^{2}.

Operad characterised by the category of algebras

 that it classifiesThe operad P produces algebras endowed with infinitely many multilinear operations satisfying infinitely many "multicommutativity" properties.

- Let L be a linear space with symmetric even non-degenerate scalar product h.
An action of P upon it induces upon L the hypercommutative (or hyperCom) algebra (see next slide).
4.4.1. Definition. A structure of cyclic hyperCom-algebra on (L, g) is a sequence of polylinear multiplications

$$
\circ_{n}: L^{\otimes n} \rightarrow L, \circ_{n}\left(\gamma_{1} \otimes \cdots \otimes \gamma_{n}\right)=:\left(\gamma_{1}, \ldots, \gamma_{n}\right), n \geq 2
$$

satisfying three axioms:
(i) Commutativity $=\mathbf{S}_{n}-$ symmetry;
(ii) Cyclicity: $h\left(\left(\gamma_{1}, \ldots, \gamma_{n}\right), \gamma_{n+1}\right)$ is \mathbf{S}_{n+1}-symmetric;
(iii) Associativity: for any $m \geq 0, \alpha, \beta, \gamma, \delta_{1}, \ldots, \delta_{m}$

$$
\begin{gathered}
\sum_{\{1, \ldots, m\}=S_{1} \amalg S_{2}} \pm\left(\left(\alpha, \beta, \delta_{i} \mid i \in S_{1}\right), \gamma, \delta_{j} \mid j \in S_{2}\right)= \\
\left.\left.\sum_{\{1, \ldots, m\}=S_{1} \amalg S_{2}} \pm\left(\alpha, \delta_{i} \mid i \in S_{1}\right), \beta, \gamma, \delta_{j} \mid j \in S_{2}\right)\right)
\end{gathered}
$$

with usual signs from superalgebra.
(iv) (Optional) identity Data and Axiom: $e \in L_{\text {even }}$ satisfying

$$
\left(e, \gamma_{1}, \ldots, \gamma_{n}\right)=\gamma_{1} \text { for } n=1 ; 0 \text { for } n \geq 2
$$

